
AD41700 Computer Games
Prof. Fabian Winkler/Christian Barrett
Fall 2011

Introduction to Unity3D (vers. 3.4)

Game development is a tricky thing. While there's quite a lot of people who want to be
involved in amateur game development, relatively few of them can manage to create a
3D game on their own. It could be the high barrier of entry; traditionally, creating a 3D
game either resulted in a large amount of coding to do the simplest of tasks or a
lowering of standards to fit with the engines targeted at beginners. It could also be a
resources thing; game development traditionally takes a lot of time and money. So what
is the game development enthusiast to do?

The solution is in a game engine targeted at independent developers and allows for
rapid testing of ideas. Luckily, there is such an engine on the market: the very capable
Unity3D. Unity provides a strong combined graphics, audio, physics, and input engine
that encourages an implement-test-tweak model of game development. It's easy to pick
up, works well with most 3D modeling packages (including the most popular modeling
package, Blender, which is completely free), runs quickly, and can deploy to Windows,
Mac, the Web, and a number of hand-held devices. Another huge advantage Unity3D
has is in price. For no cost at all, anyone can download a copy of Unity with a license
that allows commercial distribution of any products created with it. While there are some
features only available in the professional versions and licensing (such as real-time
shadows and deploying to platforms other than desktops and the web), the free version
of Unity3D is more than enough to introduce somebody to game development.

Unity vs. Unity Pro

In contrast to the expensive Unity Pro version ($1,500) the free version of Unity does not
have: realtime shadows, realtime audio filters, custom splash screen, video
playback/streaming, development possibility for iPhone and Android devices.

But the free version of Unity still has some very powerful features:
Physics engine, positional audio, web browser and standalone deployment, shaders,
terrain editor, tree creator…

A quick note:
The goal of this workshop series is to teach students how to quickly implement a game
design to be tested and tweaked. Due to the limited time we have, we will not be
covering the creation of 3D or 2D art assets. This is part of the individual
responsibilities of the interdisciplinary teams that are working together in the second
half of the class.

Winkler/Barrett, Intro to Unity3D workshop, p. 2

Before we begin working in Unity3D, let’s take a look at some important concepts used
in the software:

Coordinate Space

Polygons

Textures

Textures need to be square and sized to a power of 2:

• 128 x 128
• 256 x 256
• 512 x 512
• 1024 x 1024

The larger the texture file the more processing power is needed.

polygon triangle/face

edges points/vertices

Winkler/Barrett, Intro to Unity3D workshop, p. 3

Physics
A Rigid Body component is given to any object you want to be under control of the
physics engine.

Objects can have the following properties:

• Mass
• Gravity
• Velocity
• Friction

Collision Detection

Assets

Scenes
Levels/areas of game content (menus, etc.)

Game Object
Assets that are being used in a game scene.

Components
Games are made up of individual components or parts that can be pieced together in a
modular fashion (behaviors, defining appearance, etc. also scripts), e.g. renderer
component to make objects visible, transform components place them in the virtual
world, etc. Components can be added to game objects.

Scripts
Javascript, C#(C sharp), Boo

Prefabs
Store a game object together with is components + configurations for easy
duplication/reuse.

Winkler/Barrett, Intro to Unity3D workshop, p. 4

User Interface

File > New Project

(Remember to keep all you project related assets in this location to avoid missing files
and broken links alter in the game development process).

Window > Layouts > 2 by 3

• Scene
• Game
• Hierarchy
• Project
• Inspector

1. Scene: This is where you will place any visual assets in your Unity environment. It will
update in real-time when you are previewing the game. Note the manipulator on the top
right; this allows you to switch between a number of standard views. We are currently in
the perspective view. Although this doesn't matter too much, it allows us to view our
scene with a vanishing point, which is the standard way Unity games will display.

2. Game: When you're not actively running the game, it will show a render of how the
game will look, ignoring graphical effects that need to be computed at run-time, from
the point of view of the main camera. When you're previewing the game, you'll be
playing through this window. Since our scene is currently empty, all this window is
showing is the background color.

3. Hierarchy: This lists all the objects in the currently loaded scene, and any children
they may have. Children are objects that can be thought of as subordinate to the parent
object; wherever the top object moves, they'll follow, keeping the current offset they

1

2
! 1

3
! 1

4
! 1

5
! 1

6
! 1

7
! 1

Winkler/Barrett, Intro to Unity3D workshop, p. 5

have to this object. This is an important concept for Unity beginners to understand; we'll
cover it more later and in the workshops.

4. Project/Assets view: This is a list of all custom assets for our game, including
graphical assets, sound, scripts (more on these later), prefabs (pre- assembled game
objects), and much more. Our current game is only using the Standard Assets (which
come with Unity, and provide templates to quickly get going in a virtual environment),
our current scene, and a custom character control script.

5. Inspector: Since we currently don't have any objects selected in the Hierarchy or the
Project/Assets view, it's completely blank. The inspector allows us to look at and tweak
individual settings of various game objects and assets, as well as adjust some global
settings. The Inspector is content-sensitive and changes its parameters based on which
game object/asset is selected. This is also a place to show you your project settings and
preferences by choosing them from the Edit menu.

Number six (6) are the graphical icons for moving the scene and its contents. The
hand allows us to pan around the scene; when combined with other scene camera
controls, Unity becomes very easy to navigate (we'll cover these later). The icon on its
right, which looks like four arrows, allows you to move a selected object around. We call
this transforming the object. The next icon allows for rotation of the object, and the
final one allows for uniform scaling of the object.

Number seven (7) is the playback bar. This allows us to play, pause, and stop running
our game in the Unity editor. This is the quickest and easiest way to test and tweak your
game.

Navigating the Scene Window

The scene view is what allows you to look around and move the visual assets you import
into Unity. It's how you'll assemble your levels and place important things like lighting,
trigger zones, audio, and much more. Being able to control the camera is important if
you want to do anything at all with it.

Hand Tool (shortcut Q): drag around in the scene to pan your view. Holding down
alt+drag will rotate the view, Ctrl.+drag will allow you to zoom. It is important to
remember that this doesn't move anything in the scene, just your point of view.

Translate Tool (shortcut X): active selection tool, enables to drag an object’s axis
handles in order to reposition it.

Rotate Tool (shortcut E): using handles to allow you to rotate an object around either
of its axes.

Scale Tool (shortcut R): works the same as the previous two tools, allows scaling of an
object.

Winkler/Barrett, Intro to Unity3D workshop, p. 6

Your First Unity3D Scene

Now that you can look around the scene, let's learn a few ways we can place things in it.
First we'll take a look at the basic game objects Unity can create without visual assets.
Unity 3 has geometric primitives (cubes, spheres, planes, capsule, etc.), lights, particle
systems, cameras, and more that it can create without needing external assets. To
access these, go to the top menu bar, select Game Object ->Create Other and make a
choice. To begin with, try making a simple scene with a cube (functioning as a floor), a
sphere, and a light. There's three different types of light - for now, a directional should
work just fine, as light travels in rays with the direction of the arrows of the light, a good
way to simulate the sun in Unity.

Start by creating a cube:
Game Object > Create Other > Cube

You can already use the Inspector window (after selecting the cube in the hierarchy) to
modify its scale properties: Scale: X: 25, Y: 2, Z: 25 and to translate it Position: X: 0, Y: -
10, Z: 0

Now we just need to move our camera a little back and point it downward to see the
newly created box (it looks more like a plane now)
Position: X: 0, Y: 0, Z: -25; Rotation: X: 20, Y: 0, Z: 0;

It’s now a good time to save your very first scene before we continue.

Tip: If you want to remove a game objects from the hierarchy/scene – select them press
command+delete or go to Edit>Delete

Winkler/Barrett, Intro to Unity3D workshop, p. 7

Now create the directional light source:

Game Object > Create Other > Directional Light

We should also move the light source a little back, up and tilt it downward to see its
effect on the box object:
Position: X: 0, Y: 10, Z: 20; Rotation: X: 30, Y:180, Z: 0;

See the change in how it affects the box by experimenting with different angles and
directions of your light source:
For example:
Position: X: 0, Y: 10, Z: -20; Rotation: X: 30, Y:0, Z: 0;

Winkler/Barrett, Intro to Unity3D workshop, p. 8

Next, create the sphere and place it above the box:

Game Object > Create Other > Sphere

Position: X: 0, Y: 2, Z: 0; Scale: X: 4, Y: 4, Z: 0

Since there is a main camera that comes with every scene, you could hit the play button
now and view your scene. Unfortunately, it will be entirely static. You can't control the
movement of the camera and none of the scene is moving itself.

Introducing Physics
The first thing we need to do is to give the sphere a rigid body component. Select the
sphere and go to: Component > Physics > Rigid Body.

Hit the play button and you see how the sphere is falling, but not bouncing.

In the next step we create a physic material which will provide the material properties to
make the game object bouncy:

Asset > Create > Physic Material

Then select the material in the Project window and experiment with the bounciness
value in the Inspector. The higher this value (closer to 1) the bouncier the material.

Hit the play button and see how the sphere is bouncing similar to a rubber ball.

You can now start experimenting with different heights from which the ball is falling as
well as different angles of the box to see what response they create in the behavior of
the sphere.

Winkler/Barrett, Intro to Unity3D workshop, p. 9

Creating Materials:

Assets->Create->Material

You will see the new material in you Project window and its properties in the Inspector
window. In order to change its color double click the color swatch next to Main color
and choose a different color. You apply the material to a game object by simply
dragging it from the Project window onto the game object in the hierarchy window. You
can then start tweaking the material’s properties by experimenting with different
shaders from the shader drop-down menu in the Inspector window.

Another way to change the visual appearance of game objects is to use 2D textures. A
good overview of 2D texture features in Unity is in this chapter of the software’s
documentation: http://unity3d.com/support/documentation/Components/class-
Texture2D.html. We will take a closer look at textures in one of the following
workshops.

Using Prefabs and the Terrain Editor

Now after we have learned how to create simple primitive geometries in Unity3D and
attach physics properties to them, let’s explore how we can use prefabs to move around
a virtual environment interactively, using a first person point of view.

But let’s first create a terrain that we can move around in:
We will use Unity’s Terrain editor to do this – we start with a simple plane, which can be
easily turned into a topographical landscape.

Winkler/Barrett, Intro to Unity3D workshop, p. 10

Create a terrain Terrain > Create Terrain and then access its heightmap resolution menu

Moving the camera up and over a little helps you seeing the original plane for the terrain
a little better: Position: X: 500, Y: 100, Z: 0

Change the view in your Scene to Top view by clicking on the view icon in the Scene
window’s top right corner.

Now click on the Terrain in the Hierarchy window and choose the “raise height” tool (the
first one on the right). Click and drag to create a shape on your plane.

Winkler/Barrett, Intro to Unity3D workshop, p. 11

Experiment also with some of the other terrain paint tools, such as “lower terrain
height”, “set terrain height” and “smooth terrain height”.

Finally create a directional light, so the topography looks more dramatic:

In the interest of time we will stop our experimentations with Unity’s Terrain Editor here
and move on to creating a first person perspective that allows you to navigate the

Winkler/Barrett, Intro to Unity3D workshop, p. 12

terrain interactively. (For a more in depth discussion of terrains and Unity’s Terrain
Editor see chapter 2 in Will Goldstone’s book Unity Game Development Essentials).

If you haven’t included the Standard Assets Package while you created the new project
you should import it now, specifically the Character Controller package: Assets > Import
Package > Character Controller.

In the Project Window open the Standard Assets folder, open the Character Controller
folder and drag the First Person Controller onto your scene. Delete the main camera, hit
the play button and you are ready to explore the terrain you have just created. You can
look around with your mouse and move with WASD or the arrow keys.

Further Resources:

Unity beginner’s video tutorials: http://unity3d.com/support/documentation/video/

Unity User guide: Basics
http://unity3d.com/support/documentation/Manual/Unity 20Basics.html

Creating 3D Content externally for Unity3D – freeware modelers for Apple computers

• Blender (http://www.blender.org/) extremely powerful freeware but steep
learning curve.

• Wings3D (http://www.wings3d.com/) less powerful but also easier accessible.
• Sketchup (http://sketchup.google.com/), easiest to use but hard to export

content for use in Unity3D – only possible with the free OBJexporter v1.6
20110402plugin:
http://forums.sketchucation.com/viewtopic.php?f=323&t=33448

Winkler/Barrett, Intro to Unity3D workshop, p. 13

Here is a list of currently supported software for external content:
http://unity3d.com/unity/features/asset-importing

